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Abstract

A numerical model is presented, based on the finite element method in its displacement formulation, aimed at the
analysis of the representative volume element (RVE) of composites reinforced by a regular array of long, parallel fibers,
subjected to any 3-D macroscopic stress or strain state. Special finite elements are formulated, which are capable of
describing three-dimensional deformation modes associated with strain fields invariant along the fiber axis. Periodicity
boundary conditions at the sides of the RVE complete the kinematic formulation. The model is applied to metal-matrix
composites, assuming an elastic—perfectly plastic behaviour for both phases; the compatibility matrix of the finite ele-
ments is modified, according to proposals of other authors, to avoid locking phenomena near the fully plastic range.
Some numerical applications are shown to illustrate the possibility of employing the model to predict the macroscopic
response of metal-matrix composites in the non-linear field and up to failure. Comparisons with analytical and exper-
imental results available in the literature testify the reliability of the model estimates.
© 2004 Published by Elsevier Ltd.
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1. Introduction

Predicting the global (or average, or macroscopic) mechanical response of fiber-reinforced composites
(FRCs) starting from the knowledge of the local (or microscopic) properties of their constituents is a goal
that many researchers have set themselves in the last decades. This information is of great importance, for
instance, when the materials to be employed in the design of a new composite with prescribed stiffness (or
strength) properties have to be selected.
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Historically, the first works regarding the prediction of the macroscopic properties of heterogeneous
media, including FRCs, covered the linear elastic range, and essentially aimed at giving estimates for the
average elasticities in (semi-)analytical form. Among these, considerable diffusion have found the bounds
formulated by Hashin and Shtrikman (1963) on a variational basis; the concentric cylinder assemblage
model proposed by Hashin and Rosen (1964); the methods exploiting the concept of Eshelby’s tensor
(Eshelby, 1957), such as the self-consistent method (Hill, 1965) or the Mori-Tanaka method, revisited
by Benveniste (1987); and the method of cells for periodically reinforced composites (see e.g. Aboudi,
1991, for a comprehensive treatment).

Most of these methods were later extended to predict the non-linear macroscopic behaviour of compos-
ites. For instance, the self-consistent method was extended by Dvorak and Bahei-El-Din (1979) to the plas-
tic range. Also, the method of cells was applied by Pindera and Aboudi (1988) to predict the initial yield
surfaces of metal-matrix composites. Widely known is also the model proposed by Teply and Dvorak
(1988) to predict the response of composites evenly reinforced by a periodic hexagonal array with elasto-
plastic constituents.

Models suitable to the description of the global response of composites in presence of damage phenom-
ena have also been formulated, incorporating both debonding processes at the fiber—matrix interface (see
e.g. Ju and Lee, 2001) and delamination effects at the contact surface between different layers in multi-
layered laminates: see, e.g., Corigliano (2003) for a comprehensive review on computational damage and
fracture methods for composites.

Many of the numerical models quoted above are based on the finite element method for the solution of
the governing equations. So far, at the author’s knowledge, the prediction of the non-linear behaviour of
elastic—plastic composites subjected to a general state of stress has mostly been performed using 3-D
models, which obviously makes the numerical analyses burdensome. In this paper, a finite element model
is proposed, which explicitly takes advantage of the geometry of the reinforcement. Indeed, allowing for the
theoretically unlimited length of the fibers in unidirectionally reinforced composites, the problem can be
reduced to the analysis of any cross-section of the material, which is in a state of ‘generalized plane strain’,
as discussed later.

The layout of the paper is as follows. In Section 2 some basic concepts are briefly reviewed regarding the
theory of homogenization for heterogeneous media with periodic structure, which is the starting point for
the development of many micromechanically-based theoretical models for composites. Section 3 is devoted
to the description of a finite element numerical model, which allows a representative volume element (RVE)
of composite with long, parallel fibers to be analyzed by explicitly accounting for its particular geometry, as
outlined above. A new type of 2-D finite elements, endowed with the 3-D kinematics of a solid in general-
ized plane strain conditions, is presented in Section 3.1. The kinematic conditions to be imposed at the
boundary of the discretized RVE to match the periodicity of the medium are detailed in Section 3.2. Section
3.3 describes the modifications to be made to the compatibility matrix of the elements to correctly predict
the ultimate strength of incompressible perfectly plastic FRCs. The effectiveness of the model is assessed in
Section 4, through comparisons both with theoretical estimates of the macroscopic strength domains of
MMCs subjected to multiaxial stresses (Section 4.1) and some available experimental results (Section
4.2). Finally, some remarks on the proposed model are made in Section 5, where possible future develop-
ments are also outlined.

2. An outline of homogenization theory for periodic media
It is well known that ‘homogenization’ is the substitution of a real heterogeneous medium with an ideal,

homogeneous continuum. The properties of this medium are derived through analyses of a ‘Representative
Volume Element’ (see e.g. Nemat-Nasser and Hori, 1993), that is, a volume that is sufficiently large to
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include an effective sampling of the heterogeneous microstructure of the medium. If the heterogeneous med-
ium consists of a matrix embedding evenly distributed inclusions of the same shape, the medium is said to
be periodic, and a single ‘unit cell’ can be taken as RVE. The entire periodic medium can be seen as a
collection of contiguous, equal unit cells. The computational effort to analyze this kind of RVE is greatly
reduced in comparison with heterogeneous media with random inclusions.

In real composites, the arrangement of the reinforcing array is essentially random. For unidirectional
composites with long fibers, the simplifying assumption is commonly made of considering fibers evenly
spaced. The consequences of neglecting any randomness in the reinforcing array of metal-matrix compos-
ites (MMCs) were investigated by Brockenbrough et al. (1991). The authors considered several types of
periodic packing arrangements for MMCs with continuous fibers and concluded that the results for a
‘triangle-packing arrangement’ satisfactorily match those of a random-packing. Accordingly, in this work,
fibers are supposed to be located at the corners of equilateral triangles. A possible choice for the unit cell is
a prism of unlimited length, embedding a single fiber, the cross-section of which is a regular hexagon (see
Fig. 1); note that the length of the unit cell along the fiber axis, z, is immaterial.

Stresses and strains at any point of the homogenized medium (also called ‘macroscopic’ stresses and
strains, and denoted by X and E, respectively) are defined as the averages over any RVE of the correspond-
ing local (or microscopic) quantities, ¢ and €, provided that the RVE does not embed any crack or cavity
(see e.g. Nemat-Nasser and Hori, 1993). Thus:

1 1
Z:m/ya(x)dV; E:m//e(x)dV. (1)

Here, V' is the volume of the RVE and x is any point in V.

In the case of periodic media, the microscopic fields have to fulfill suitable periodicity conditions ensur-
ing continuity of boundary tractions (¢) and displacements () across adjacent cells (see e.g. Suquet, 1987).
t must take equal and opposite values at two corresponding points of the boundary of the RVE, 0V, that is,
t must be anti-periodic on 0V. u must be of the form:

u(x) = uo + (E + Q)x + a(x), 2)

with & periodic over V; uy and the anti-symmetric second-order tensor Q define any (infinitesimal) rigid-
body motion of the RVE. A displacement field fulfilling Eq. (2) is also said to be ‘strain-periodic’ (Suquet,
1987). No macroscopic strain is associated with #. For periodic media, the appropriateness of X and E as
mechanically meaningful macroscopic variables is supported by the rate-of-work equivalence (also known
as ‘Hill’s macro-homogeneity equality’):

Fig. 1. RVE for a composite reinforced by a periodic hexagonal array of long, parallel fibers.
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Z:E:L/a:édl/, (3)
1Sy

which shows that, for periodic media, X and E are conjugate variables in the expression of the rate-of-work
referred to any unit cell. Eq. (3) is the basis of energy approaches to evaluate bounds to the yield strength of
fiber composites (Suquet, 1982; de Buhan and Taliercio, 1991; Taliercio, 1992; Taliercio and Sagramoso,
1995).

The incremental macroscopic (or homogenized) constitutive law of any composite with periodic struc-
ture can obtained, for instance, by imposing a given macroscopic stress increment to the unit cell and find-
ing the corresponding macroscopic strain rate. This amounts at solving the following problem for the unit
cell:

Given £, find E (i) such that

) :% /Vo"(x)dV (4)

dive =0 inV (5)

t = 6n anti-periodic on 0V (6)

E-L / E(x)dV (7
V1 Jy

it — Ex periodic on V (8)

6= f(e(i)) in V. 9)

Eq. (9) is symbolically the microscopic constitutive law in rate form at any point of the RVE.
The problem (4)—(9) is well posed, for instance, in the linear elastic case or when dissipative standard
components are dealt with (Suquet, 1982).

3. The proposed finite element model
3.1. 2-D finite elements with 3-D strains invariant along an axis

The appropriate kinematic assumption for the analysis of any RVE of a composite reinforced by an ar-
ray of long, parallel fibers is that the RVE is in a state of generalized plane strain (GPS), that is, the strain
field is invariant along the fiber axis, z, owing to the assumed infinite length of the fiber: € = €(x, y). Thus,
the displacement field must be, at most, linear in z; in particular, the axial strain e, is necessarily constant
throughout the RVE.

In order to match this kinematic requirement, a ‘slice’ of any 3-D RVE can be analyzed through conven-
tional finite elements, with suitable boundary conditions. This was done, e.g., by Aghdam et al. (2001), Xia
et al. (2003), Brockenbrough et al. (1991), and Carvelli and Taliercio (1999b). In the latter two works the
macroscopic properties of elastic—plastic FRCs are estimated by discretizing the RVE with 8-noded isopar-
ametric ‘brick’ elements, which allow the displacement field to vary linearly along any direction (provided
that the elements are undistorted). Fig. 2 shows the 3-D finite element mesh employed by Carvelli and
Taliercio (1999b): during deformation, the faces of the mesh orthogonal to the fiber axis were kept parallel,
so as to enforce GPS conditions throughout the volume.
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Fig. 2. Discretization of the RVE with 3-D finite elements.

A computationally expedient alternative to 3-D elements consists in formulating 2-D finite elements en-
dowed with the kinematics of a continuum in GPS conditions. This was proposed by Taliercio and Carvelli
(1999), who developed plane finite elements capable of describing a 3-D strain field invariant along the fiber
axis to estimate the macroscopic elastic properties of FRCs through the analysis of the cross-section of any
RVE. The kinematics of these elements is briefly recalled here. From here onwards, a matrix notation will
be employed, unless explicit notice.

Consider a finite element (e) with n) nodes; each node has three degrees of freedom, corresponding to
the components of the nodal displacement U;e) = {uj(.e), vj@, w§e> M, j=1...n'“. Each component of the dis-
placement field, u(x) = {u(x),v(x),w(x)}T, is modeled so as to depend linearly on z over any element;
concisely:

”(6)<x7yaz) = N<e>(x7y) U(e) +zE, (10)

where U collects the 3 x n'® nodal degrees of freedom and E. = {2E:_\,,2Ezy,E:Z}T is an array gathering
three additional degrees of freedom (d.o.fs), common to all the elements into which the RVE has been
discretized; E.,, E., and E.. can be interpreted as three of the macroscopic strain components, once the
periodicity of the strain field has been enforced. If the proposed finite elements have to be implemented
in a finite element code with user-oriented interface, it can be computationally expedient to associate these
additional d.o.fs with a fictitious node (‘node 0°), shared by all the elements forming the mesh. Assembly is
then performed in the usual way, accounting for the fictitious node in the connection table. Fig. 3 schemat-

ically shows finite elements with three or four nodes of the type proposed in this work.

Fig. 3. Three- and four-noded 2-D elements with out-of-plane linear modeling of the displacements.
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Alternatively, only the periodic term in the microscopic displacement field, Eq. (2), might be modeled
through shape functions (Débordes, 1986): in this case, all of the six macroscopic strain components can
be interpreted as d.o.fs shared by all of the elements.

From here onwards the superscript (¢) defining any element will be omitted for the sake of brevity. NV is
the in-plane shape matrix, which modelizes the displacement field in the plane (x,y) orthogonal to the fiber
axis. As usual, NV can be split into 3 x 3 sub-matrices, each one pertinent to one of the nodes:

1 0 0
Nj(xay):Nj(xvy) 010 ’ ]:ln, (11)
0 0 1

here, the same type of discretization has been employed for all three of the displacement components.

Let € = {€y, €y, €2 Yy Voo yzy}T be the array gathering the six independent (infinitesimal) engineering
strains (i.e., axial and shearing strains). The strain field associated with Eq. (10) over any element has
the form

€(x,y) = By(x,y)U + B;E.. (12)

Bj is the constant matrix

B

I
S - ©o o o o
- o o o o ©

S o o = O O

By is the in-plane compatibility matrix, which can be split into 6 X 3 sub-matrices By, j=1...n, each one
defining the contribution of the j-th nodal displacement to the in-plane modeling of the strain field. Each
sub-matrix is given by

_% 0 () —_
N,
0 & 0
0 0 0
BUj = AN; N E J= 1 n (14)
% ox
o o &
N,
Lo 0 2]

Considering an element made of elastic—plastic material, the (tangent) stiffness matrix, K, can be ex-
pressed as

K K
K = [ v UE}, (15)
Ky Ker
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where, denoting by 4 the domain occupied by any finite element in the plane (x,y):

Kuo = [ B (ry)Dls.y) By (r.y) drdy (16)
Koo = ( [ B D sy ) B (7
Ky = B}, (/A D(x,y)dxdy) B:. (18)

D is the 6 x 6 matrix defining the incremental stress—strain law for an elastic—plastic material: ¢ = De. If the
stress point lies inside the elastic domain, or the stress point is at yielding but the stress increment points
‘inwards’ the current elastic domain, D is the elastic matrix, D. If the stress point is at yielding, and the
stress increment keeps it on the current yield surface, D is the elastic—plastic matrix. In standard plasticity,
D is given by (see e.g. Owen and Hinton, 1980):

nn" DY >
h+n™D%%)’

where I is the identity matrix, » is the unit vector outward normal to the elastic domain at the current stress
point, and 4 is a hardening parameter.

For finite elements made of linearly elastic, homogeneous, isotropic materials, the explicit expressions
for the matrices Ky and Kz can be found in Taliercio and Carvelli (1999).

The discretization of any RVE presented in Section 3.2 makes use of finite elements with three or four
nodes each (see Fig. 3). The four-noded element is obtained by mapping the classical square ‘parent’
element onto the (x,y) plane with the same shape functions that model the displacement field. Thus, the
employed elements behave similarly to classical CST and ISOP4 2-D elements as far as the modelization
of the displacement field on the in-plane coordinates is concerned. Note, however, that the proposed
elements cannot be strictly regarded as isoparametric, because of the presence of the axial coordinate z
in the modelization of the displacement field.

D = D" <1— (19)

3.2. Boundary conditions for the discretized RVE

The discretization made to analyze a typical RVE of a periodically reinforced fiber composite is analo-
gous to that employed by Taliercio and Coruzzi (1999) to predict the macroscopic response of linearly elas-
tic and brittle-matrix composites under plane strain conditions. Owing to symmetry considerations, only
half of the RVE can be discretized. Fig. 4 shows the finite element mesh used in the applications: it consists
of 890 four-noded elements and 90 three-noded elements. The total number of nodes, each one having three
d.o.fs, is 1114; the fictitious node with E. as d.o.fs completes the mesh. In Fig. 4 the mid-points of the four
sides of the mesh are denoted by J, H, K, and O.

The kinematic conditions to be imposed at the boundary of the discretized RVE to match the periodicity
of n = u(x,y) in Eq. (2), and amount to
N Uy + ug
=5
where up is the displacement at any point P. Here, (4, B) is any pair of nodes on any side of the RVE, sym-
metric with respect to the mid-point (C) of that side (with C = J, H, K or O). A condition has to be added to
ensure the compatibility of the deformed sides of the mesh, namely

Uo +uy = u; + ug. (21)

(20)

uc
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Fig. 4. Discretization of the RVE with 2-D finite elements.

Further details on these conditions can be found in Taliercio and Coruzzi (1999). Egs. (20) and (21) involve
the total boundary displacements and are easier to implement in existing finite element codes than condi-
tions dealing with the periodic term #(x, y) (see e.g. Francescato and Pastor, 1997). An alternative form of
the boundary conditions was employed by Xia et al. (2003), who imposed that any two opposite sides of the
deformed RVE remain parallel, thus meeting both the requirements of strain periodicity and displacement
continuity across adjacent RVEs. As shown in Taliercio and Coruzzi (1999), the two forms of boundary
conditions are actually coincident.

Finally, consider the conditions preventing any rigid body motion of the RVE. Rigid translations can be
suppressed, e.g., by setting u#p = 0. Since periodicity requires #c = 0 at the mid-points of any side of the
mesh, application of Eq. (2) at H and K yields (see Fig. 4):

Ug = Exxé, vy = (ny —+ va)g, Wy = (sz —+ sz)gy (22)
l 14 l
Ug = Exx E + (Exy + Qxy)h7 Vg = (ny + ny) E + Evyyh7 Wi = (sz + sz) E + (Ezy + sz)h. (23)

Accounting for Egs. (22) and (23), the condition Q = 0 which suppresses any (infinitesimal) rigid rotation
of the RVE implies:

Uy M](—MH/Z Wy W](—WH/Z

—=——" E.=—, E,=———" 24

é h ) zx é 9 zy h ( )
Also, Egs. (22) and (23) allow one to relate the in-plane displacements of nodes H and K with three of the
other macroscopic strains:
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e
gl E}y:%7 £, =" (25)

Egs. (24) and (25) can be directly exploited to analyze the RVE under any macroscopic strain, by simply
prescribing the values of some d.o.fs (and/or relations between them). These d.o.fs, namely uyy, vy, vk, E..,
E.,, and E.., will be called ‘master degrees of freedom’ in the continuation of this paper.

Owing to symmetry considerations, it is also possible to model elementary macroscopic stresses by giving
some of the d.o.fs prescribed values. Table 1 summarizes which d.o.fs have to be prescribed to reproduce
any elementary macroscopic stress in the RVE; the remaining ‘master’ d.o.fs are implicitly free. It goes with-
out saying that, beyond the linear elastic range, non-elementary stresses (e.g., off-axis tension, biaxial ten-
sion, etc.) cannot be reproduced by simply prescribing any d.o.f.

Recently, Jiang et al. (2002) discussed the influence of the boundary conditions on the predicted macro-
scopic elastic and elastoplastic response of periodic 2D composites. They concluded that, as far as the load-
ing conditions considered in their work are concerned, the response predicted using periodic boundary
conditions is the same as that predicted using special ‘mixed’ boundary conditions, involving both bound-
ary tractions and displacements. If uniform boundary displacements, or uniform boundary tractions, are
prescribed, bounds on the response predicted using periodicity conditions are obtained. The gap between
the bounds narrows as the mismatch in properties between the phases decreases, and as the size of the RVE
(consisting of several unit cells) increases.

3.3. Modified compliance matrix for incompressible deformations

It is well known that finite element solutions dealing with incompressible materials are prone to ‘locking’
effects when approaching the fully plastic range. Several techniques have been proposed to circumvent this
problem, such as the selected integration of the tangent stiffness matrix, with a reduced integration of the
volumetric term (Malkus and Hughes, 1978). Another possibility is the use of ‘enhanced strain’-based ele-
ments: this was done, e.g., by Capsoni and Corradi (1997) to predict the ultimate carrying capacity of struc-
tures in plane strain conditions, and later applied by Carvelli and Taliercio (1999a) to compute the
macroscopic strength of FRCs under transversal stresses.

The approach proposed by Nagtegaal et al. (1974) is very effective for practical applications: it is based
on the definition of a modified functional, depending only on kinematic variables, whose stationarity con-
ditions imply the incompressibility constraint to be approximately fulfilled over any element. In the case of
4-noded quadrilateral elements, it was shown by the authors that, enforcing incompressibility in an average
(or ‘weak’) form, actually makes the functional to depend on a ‘modified strain rate tensor’, defined as

. 1 _. . | .
&= 3 (Vi + (Vi)' + 3 ((divir) — divar)l (26)
Table 1
Correspondence between ‘master’ degrees of freedom of the model and simulated macroscopic stress
Macrostress component Prescribed d.o.fs
Z.\'x Uy
Zy vk (ur =0)
Z:Z EZZ
ny Uy
Z:.\ E:X
D E.,
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where ( - ) denotes volume average over any finite element and 7 is the identity tensor. Note that only the direct
strain components are modified, whereas y;, = 7,,, 7%, = V.., 75, = 7.,- More complicated definitions are re-
quired for higher-order elements. The main advantage is that this approach can be easily implemented in
existing finite element codes, as one needs only to re-define the compatibility matrix converting nodal displace-
ments into strains. Incidentally note that this is the technique implemented in the commercial finite element
code ABAQUS® to prevent locking in first-order elements (see ABAQUS Theory Manual, ver. 5.7, 1997).

Only 4-noded quadrilateral elements will be dealt with in this section. The compatibility matrix of the 3-
noded elements in the mesh discretizing the RVE in Fig. 4 needs no modifications respect to that presented
in Section 3, since the incompressibility constraint does not induce significant locking effects in these ele-
ments (Nagtegaal et al., 1974). Accounting for the modified definition of the strain rates, the array gather-
ing the modified strain components can be expressed as

€ =B,U + B;E. (27)

where only the submatrix Bj, has to be modified respect to Eq. (12). If By, is split into four 6 X 3 subma-
trices, similarly to Section 3.1, Eq. (14) has to be replaced by:

r N, oN; N, N, T
%+ (®) (E-))
aN, aN; aN; aN;
S (®) 303+ (3)

(e]

o

By | HE-E) SE-() o i 5
w; w; 0
dy o
I 0 0 T

Fig. 5 illustrates the positive effects of this modifications when the FE model shown in Fig. 4 is submitted to
uniaxial transverse tension. Both phases of the composite are assumed to be elastic—perfectly plastic. If the

1600 —
e m i om = o - = —
1200 — "
—
) i
=W
% 800 — — — — original B matrix
5 modified B* matrix
[P 1 ¢ 3-D analysis
400 —
0 ) l L) l L) l
0 0.02 0.04 0.06

Xx

Fig. 5. Simulation of a tension test transverse to the fibers with the proposed model: finite element results with a conventional
compatibility matrix and a matrix modified according to Nagtegaal et al. (1974). The results obtained with ABAQUS® and the 3-D
mesh in Fig. 2 are also shown.
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traditional compatibility matrix (By) is employed for the 4-noded elements, no macroscopic yield stress is
detected, and the FE model exhibits a fictitiously hardening response (dashed line). If the compatibility ma-
trix is changed into B}, according to the procedure outlined above, the correct perfectly plastic macroscopic
response can be captured (solid line). For the sake of comparison, in Fig. 5 the results are plotted of FE
analyses performed with ABAQUS® on the 3-D model shown in Fig. 2, with boundary constraints enforc-
ing both in-plane periodicity of the strain field and GPS conditions. The results of this analysis are perfectly
superposed to those of the 2-D model with modified compatibility matrix. It is worth emphasizing that a
fully 3-D analysis is computationally much more cumbersome than the proposed model, as it involves
nearly three times the number of kinematic constraints of the 2-D model.

4. Numerical applications

Unless otherwise stated, the numerical applications described in these section refer to Ti/SCS, with tita-
nium 6Al-4V matrix and fibers in silicon carbide. The fiber volume fraction (vg) is 0.40. The elastic con-
stants (£, v) and the yield stress (o) of the components are reported in Table 2. Some comparisons with
the results of tests on B—Al specimens are also reported in Section 4.2. Both components are supposed
to comply with J,-plasticity.

4.1. Predicting the non-linear response to failure of metal-matrix composites

The finite element model shown in Fig. 4 was first analyzed under elementary macroscopic stress histo-
ries. In these analyses, one of the ‘master’ d.o.fs is progressively increased by letting the other ones free, so
as to have only one non-vanishing macroscopic stress per time, according to Table 1. The analyses end up
as a numerical ‘macroscopic yielding’ is detected, that is, the value of the macroscopic stress does not sig-
nificantly change from one load step to another. The results of these analyses are presented in Fig. 6 in the
form of contour plots of the equivalent plastic strain at the ‘macroscopic yielding’, which is matched by the
formation of shear bands in the RVE. If a macroscopic axial stress X.. is applied, strains are uniform
throughout the fiber and the matrix: this case is not shown in Fig. 6.

The discretized RVE was also subjected to a number of radial loading paths in the space of the macro-
scopic strains: the d.o.fs corresponding to the macroscopic strain components E.., E,, and E_. (see Egs.
(24) and (25)) were monotonically increased by keeping their ratios equal to prescribed constant values.
The remaining ‘master’ d.o.fs are free. Accordingly, the stress point in the space of the macroscopic stresses
moves along paths which are radial when the stress at any point in the RVE lies within the local elastic
domain, but which deviate from linearity when plasticity develops within the RVE. Owing to symmetry
considerations, the macroscopic stress associated with the prescribed macroscopic strain has zero cartesian
shear components: thus, X, X,, and X.. are macroscopic principal stresses.

Figs. 7 and 8 show the stress points along the different loading paths considered: Fig. 7 refers to loading
paths with E_. free (so that X.. = 0); in Fig. 8 the stress points along any loading path are projected onto the

Table 2
Elastic properties and yield stress for matrix and fiber of Ti/SCS (after Sun et al., 1990)

E (GPa) v oo (MPa)
Matrix (Ti-6-4) 109 0.34 980

Fiber (SCS-6) 427.6 0.25 3000
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(44

Fig. 6. Contour plots of the equivalent plastic strain at the macroscopic yielding in numerical tests with one macroscopic stress applied
to the RVE: (a) Ty (b) 2, (¢) 2y (d) 2.y (€) 2.

deviatoric plane II. The envelope of these loading paths (which is not explicitly drawn in these figures, to
avoid confusion) is the numerically detected macroscopic yield locus for the composite.

It is interesting to compare the ‘macroscopic strength domain’, G"™, obtained through the finite element
model presented and some theoretical approximations of this domain available in the literature. G™™ is
defined as the set of macroscopic stresses associated with periodic, statically and plastically admissible
microscopic stress fields within the RVE (Suquet, 1982). The theoretical bases for the definition of bounds
to G™™ are briefly recalled in the Appendix. The sections of these bounds for Ti/SCS are shown in Figs. 7
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Fig. 7. RVE subjected to biaxial principal stresses aligned with x and y: numerically identified yield locus and theoretical bounds for
the macroscopic strength domain in the plane (2,,, 2,)).

— ¢ — F.E.results

— — matrix vield surf.
— — contracted fiber yield surf.
— inner bound

outer bound ‘ 2::

15
”
7
#
/
|
it
1500
o
\
Z.W
-15

Fig. 8. RVE subjected to triaxial principal stresses aligned with x, y and z: numerically identified yield locus and theoretical bounds for
the macroscopic strength domain in the deviatoric plane I1.
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and 8 (solid lines) and compared with the sections of the numerically identified macroscopic yield locus in
the corresponding planes. For the sake of comparison, in these figures the yield domain of the unreinforced
matrix and the yield domain of the fiber material, homothetically contracted as discussed in the Appendix,
are also shown. The theoretical bounds are perfectly consistent with the numerical findings of the present
work: all the macroscopic stress paths end in the region comprised between the inner and outer bounds to
the macroscopic yield surface.

4.2. Comparisons with experimental results

Table 3 summarizes the macroscopic elastic constants for Ti/SCS identified through the present numer-
ical model, by submitting the discretized RVE to elementary stresses. These values are compared with the
experimental ones reported by Sun et al. (1990) and the elastic coefficients estimated according to Mori—
Tanaka theory (Benveniste, 1987). Note that the axial shear modulus, G.,, was not directly measured by
the experimenters, but simply estimated in order to best fit some experimental curves. On account of the
scatter in the test data documented by the experimenters, the comparison is satisfactory on the whole.

The capabilities of the proposed model in predicting the macroscopic strength properties of elastic—
plastic composites were assessed through comparisons with results available in the literature. Since the
possibility of failure at the fiber-matrix interface is not allowed for in the present version of the model, com-
parisons can only be made with the results of tests on ‘strongly-bonded composites’. Tests made on ‘weakly-
bonded composites’ could be considered provided that the failure mode of the composite does not involve
the interface (e.g., tension tests nearly collinear with the fibers).

According to these requirements, the results of Dvorak et al. (1988) were selected. These authors deter-
mined the initial yield surface and the subsequent yield surfaces of B-Al composites subjected to several
multiaxial loading programs. The tests were carried out on axially reinforced tubular specimens, which were
tested under combined axial force, torque and internal pressure. Only comparisons with the experimentally
detected initial yield surface are possible with the present version of the proposed model, which does not
allow for hardening. No mention is made by the experimenters of debonding phenomena at the fiber—
matrix interface. The fiber volume fraction vy = 0.45. The uniaxial yield strength of the components is
om = 17.9 MPa for aluminium and oo; = 168 MPa for boron.

Fig. 9 illustrates to the results of tests with combined longitudinal tension and longitudinal shear,
whereas Fig. 10 refers to tests with combined transverse tension and longitudinal shear. In both figures,
the test data are plotted together with the macroscopic stress points obtained by the finite element analyses
and the theoretical bounds to the macroscopic yield surface computed according to the procedure recalled
in the Appendix. The strength data are normalized to the uniaxial strength of the unreinforced matrix,
7o = dom/V/3. Each of the numerical analyses referred to in Fig. 9 (resp., in Fig. 10) was carried out by pre-
scribing the ratio of the d.o.fs vy/E.. (resp., vy/E-,) to take different selected values. The remaining ‘master’
d.o.fs are free. The theoretical predictions match the test data with a good accuracy.

Table 3
Macroscopic elastic constants for Ti/SCS: experimental data, FE estimates, and predictions using Mori-Tanaka theory
Test data (after Sun et al., 1990) Numerical model (% diff.) Mori-Tanaka method
E,, E, (GPa) 150.3 175.9 (+17.0) 175.9
E. (GPa) 230.3 236.6 (+2.7) 236.7
G,y (GPa) . 65.09 64.43
G.., G., (GPa) 62.1% 67.63 (+8.9) 67.26
Viy - 0.3511 0.3653
Vo Vap 0.25 0.2189 (-12.4) 0.2233

# Indirect estimate.
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Fig. 9. Initial yield surface of B-Al under combined axial tension and shear: comparison of experimental data (after Dvorak et al.,
1988), numerically identified yield locus and theoretical bounds for the macroscopic strength domain.
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Fig. 10. Initial yield surface of B-Al under combined transverse tension and axial shear: comparison of experimental data (after
Dvorak et al., 1988), numerically identified yield locus and theoretical bounds for the macroscopic strength domain.

5. Concluding remarks and future perspectives

A numerical model was developed to predict the non-linear macroscopic mechanical response to failure
of elastic—plastic composites, reinforced by a regular array of continuous, parallel fibers, under any loading
condition (in terms of macroscopic stresses or strains).

The model consists of a mesh of plane finite elements, which discretizes any cross-section of a represent-
ative volume element. An original characteristic of the model is that the finite elements proposed in this
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paper are capable of describing particular three-dimensional strain fields, invariant along the fiber axis. The
compatibility matrix of the elements was modified according to the proposal of other authors, to prevent
‘locking’ effects in the plastic range. Suitable periodicity boundary conditions are enforced along the sides of
the RVE to conform to the regularity of the reinforcing array.

The model was implemented into a commercial, non-linear finite element code (ABAQUS) endowed
with a user-oriented interface, capable of dealing with multi-point kinematic constraints. Several analyses
were carried out, which showed that the numerical results perfectly match previously obtained analytical
predictions for the macroscopic strength domain of FRCs and agree with available experimental data fairly
well.

The model turns out to be definitely superior in terms of computational effort to fully 3-D models and
allows one to predict the response of FRCs under loading conditions that ‘standard’ 2-D models could not
reproduce.

Future developments of the model will include the possibility of allowing for debonding at the fiber—
matrix interface, a mode of failure which is quite common under stresses such as transverse tension for
weakly bonded composites. Also, the model could be extended to FRCs with strainhardening components,
as briefly outlined in Section 3.1.

Acknowledgments

The assistance of Mr. Valerio Lunati in software developing and data processing is gratefully acknowl-
edged. The author also wishes to thank Dr. Valter Carvelli, for placing the original software at his disposal,
and Dr. Giuseppe Cocchetti, for his most valuable assistance in the graphical output.

Appendix A. Definition of inner and outer bounds of the macroscopic strength domain of periodic composites

According to homogenization theory for periodic media applied to limit analysis (Suquet, 1987), an
inner bound to the macroscopic strength domain, G"™, of a composite reinforced by a regular array of
fibers can be obtained by defining a suitable periodic, statically and plastically admissible microstress field
within the RVE, which consists of a single elementary cell. A simple example of such field was proposed by
de Buhan and Taliercio (1991) and, in tensor notation, reads

G(x) :6m+X(Vf)6ez®eza (Al)

where y is the indicator function of the part of RVE (V}) occupied by the fiber, e_ is the unit vector of the
fiber axis, @, is the (constant) stress in the matrix and o is an additional uniaxial contribution to the stress
in the fiber. Suppose that both the fiber and the matrix materials comply with J,-plasticity; let r(>1) be the
ratio of the uniaxial fiber strength (o) to the uniaxial matrix strength (oy,,). According to Eq. (A.1), an
inner bound to G"™ in the space of the macroscopic stresses (simplified according to Taliercio, 1992) is

G, ={X=06,+v0e,Re,, 6,€Gn |o]<a} (C Gh"m) (A.2)

where G, is the strength domain of the fiber material, 6 = veoom(r — 1); Gy = Gy, for a homogeneous RVE.
This domain con be graphically constructed in the space of the macroscopic stresses by shifting Gy, along
the longitudinal stress axis, X.., of an amount equal to & on the side of tensions and of an equal amount on
the side of compressions: the convex envelope of the shifted domains is G (see, e.g., Figs. 8 and 9). This
mechanically meaningful construction points out that, basically, the strengthening effect of the fibers affects
the longitudinal strength of the composite, whereas the transverse and shear strengths of the FRC do not
significantly differ from those of the unreinforced matrix.
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An outer bound to G™™, Gy, can be obtained by computing the plastic power dissipated in any periodic
‘failure mechanism’ for the RVE, which, according to the kinematic theorem of limit analysis, is an upper
bound to the actual dissipated macroscopic plastic power. The plastic power dissipated in any unit volume
is proportional to the ‘support function’ (see e.g. Tyrrell-Rockafellar, 1970) of the material strength do-
main. Accordingly, in the case of von Mises-type constituents, G can be seen as the intersection of several
domains in the space of the macroscopic stresses (Taliercio, 1992): a domain Gy, obtained by homotheti-
cally contracting the fiber strength domain of a coefficient p = vy + (1—vg)/r(<1), which corresponds to uni-
form strain rate throughout the RVE (see Figs. 7 and 8, dashed lines), and three hypercylinders, all tangent
to G, and coaxial with the axis X... The support functions of these hypercylinders correspond to the plastic
power dissipated in failure mechanisms of the type schematically depicted in Fig. 11a and b, with rigid parts
of the RVE relatively slipping one to each other along some failure planes. The unit normal to any one of
these slip planes is denoted by n: in Fig. 11a the slip planes have n = e, whereas n = n; for the slip planes in
Fig. 11b. Similarly, mechanisms with slip planes orthogonal to n = e, can be constructed. Synthetically, the
definition of any one of the three hypercylinders is:

O0m
G (n)=<X:||IT| < —>7, A3
) = {x: 7 < 22} (A3)
where |7] is the modulus of the macroscopic shear stress acting on the slip plane. Thus
Gy = Gi N G, (ex) NG (ey) NGy (np). (A.4)

If the fiber volume fraction is sufficiently high, the slip planes would have to cut the fiber, which is usu-
ally much stronger than the surrounding matrix: this might lead to excessively high upper bounds to the
carrying capacity of the composite. Stricter upper bounds can be then obtained by considering mechanisms
such as the one depicted in Fig. 11c, with a slip surface partially involving the fiber—-matrix interface. This
leads to upper bounds to the shear strength of the composite of the kind |X..| < proom/V/3, etc., with
pr= pi(vg) = 1 (see Taliercio, 1991).

Note that the slip surfaces defining the failure mechanisms for the RVE shown in Fig. 11 can be seen as a
schematization of the localization patterns for the plastic equivalent strain inferable from Fig. 6.

The simple microscopic stress and velocity fields outlined above have the advantage of leading to ana-
Iytical expressions, e.g., for the off-axis strength of the composite (Taliercio and Sagramoso, 1995). More
sophisticated static and kinematic solutions were proposed, e.g., by Francescato and Pastor (1997), who
numerically computed inner and outer bounds to G"™ using linear programming.

¥, ¥

Fig. 11. Periodic failure mechanisms employed to evaluate outer bounds to the macroscopic strength domain of the composite.
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